字体
关灯
上一页 回目录    收藏 下一页

第125章 重构经典游戏(续)(3/4)

并不能对现在拥有声望+平台双重支持的林灰构成什么威胁。

总之,综合来看國内國外的市场形势对林灰都是极其有利的。

林灰相信《Hill Climb Racing》这款游戏会收获到巨大的成功。

带着对预期收入美好的憧憬。

林灰准备睡觉了。

在此之前林灰照例回复了一下各方面的邮件。

邮件信息虽然很多,但基本都是来自各个猎头公司的招聘邮件。

换作是前段时间,林灰还会逐封点开看看自己在各个互联网巨头眼中值多少钱?

现在林灰基本看都不看了。

林灰实在是无语,这些猎头为什么要开出一堆连我的周纳税额都不到的年薪去招募我为你们工作?

还是说现在比较流行这种黑色幽默?

尤其是猪场的这个HR更是死脑筋。

林灰记得以前还明确回复过这个人的邮件表示了拒绝。

现在还一封一封的发邮件……

呃,就很无语。

不过这份敬业的精神确很值得称赞。

而且对于认真的人,林灰一向是欣赏的。

现在站的层面更高。

林灰欣赏的眼光和以往单纯的欣赏又有些不同。

现在林灰更多是一种爱才之心。

林灰记得这个发邮件的人好像是人力资源副总监。

能爬到这种位置,能力什么的肯定是有的。

这样的人才留在猪场是不是太埋没了?

反正林灰是没记得猪场干过什么正事?

连M國的认证名单都没上,说白了就是可有可无。

林灰在一堆猎头/HR发来的邮件里翻找了一会后。

发现鹅厂HR发来的邮件措辞还算不错。

于是将这个邮件改了一下称谓和具体待遇之后。

把这个招聘邮件给猪场的HR回了过去。

虽然是临时起意,但林灰并不是恶作剧。

至少林灰感觉他开出的薪水要比这些HR给他开出的薪水靠谱得多。

这种事情只是一个小插曲。

在这以后,在邮箱里一份来自异國的邮件引起林灰的注意。

点开邮件一看,发信人是伊芙·卡莉。

自称是麻省理工学院自然语言处理研究项目文本摘要小组的负责人。

似乎是怕林灰不相信,伊芙·卡莉还在邮件里附上了一堆能够佐证身份的证明。

其实林灰是记得伊芙·卡莉这个名字的。

林灰先前他购买的《文本判断甄别比较的一种新方法》那项专利原本的所有者就是伊芙·卡莉。

她发邮件是干什么?

莫非是反悔了不成。

(⊙﹏⊙),不过还好在邮件里林灰并没有看到伊芙有提及要收回《文本判断甄别比较的一种新方法》那项专利。

伊芙在邮件里极力称赞了林灰在south wind(南风APP)中搞定的生成式文本摘要算法。

尽管伊芙·卡莉在话语里满满的全是敬意。

搞算法的人对于强者的尊敬似乎从来都是不掩饰的。

尽管算法在普通人的生活中似乎根本没充当什么角色。

但实际上这类算法是非常重要的。

某种程度上算法甚至可以说是应用的核心价值。

以前世某音海外版TIKT0K的出售为例来说。

寻求收购 TikT0k M/國业务的公司考虑了四种选择:

第一种选择是在没有算法的情况下收购TikT0k。

但要求加快出售速度,同时在应用中注入替代方案。

第二种选择是在长达一年的过渡期将算法慢慢过渡给M國。

第三种选择是寻求Z國的批准,将算法出售给选定的M國公司。

第四种选择是新买家向字/节取得使用 TikT0k 算法的授权。

这四种收购之所以在描述上有区别是因为什么呢?

说到底还是因为算法。

M國在想方设法的获取某音的核心算法。

这些不同的方案之间差价甚至可能达到100亿美元之多。

由此观之,算法在特定的场合是非常有价值的。

林灰先前搞定的生成式文本摘要算法虽然没办法跟某音基于数据分析的个性化信息推送服务技术涉及到的算法相提并论。

但也有其独到的价值。

这玩意在懂行的人眼中则是一座充满着宝藏的宝库。

反正伊芙·卡莉字里行间都是充满着对林灰的赞美。

伊芙·卡莉很好奇林灰是怎么搞定南风APP里面文本摘要技术的。

呃,其实林灰再南风生成式文本摘要处理技术是怎么搞定的很简单。

只需要大概七八步就可以轻松做到南风APP里面的文本摘要处理技术:

Ⅰ基于深度学习技术,设计合适的模型架构和训练策略。

Ⅱ设计生成式自动文本摘要模型

Ⅲ借助迁移学习的思想,提出了基于预训练模型的生成式自动文本摘要算法。

Ⅳ通过无监督来完成内容表示以及权重计算

Ⅴ……

……

步骤说起来简单。

每一步来说对于这个时空的人都很难。

有的是思路上比较难想到这个方向。

有的是技术上单纯做不到。

而有的既是思路上想不到,又是技术上做不到。

就很悲催!

比如说步骤Ⅳ里提到的无监督训练。

现在主流研究方向已经淡忘了无监督训练这个方向了。

在涉及到训练的时候更习惯监督训练。

而不是很侧重于无监督训练。

无监督训练对于这个时空的人来说似乎是一个很复古的研究方向。

在这个时空人的眼里。

无监督训练会带来训练结果发散的现象他们并不算很容易处理。

步骤Ⅲ提及的预训练模型:

在自然语言处理中引入预训练模型。

按照正常的时间线则是16年左右出现的。
本章未完,请翻下一页继续阅读.........
上一页 回目录    收藏 下一页